Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Preventive Medicine and Public Health ; : 230-239, 2016.
Article in English | WPRIM | ID: wpr-32753

ABSTRACT

OBJECTIVES: We aimed to evaluate the effect of geographic units of analysis on measuring geographic variation in medical services utilization. For this purpose, we compared geographic variations in the rates of eight major procedures in administrative units (districts) and new areal units organized based on the actual health care use of the population in Korea. METHODS: To compare geographic variation in geographic units of analysis, we calculated the age-sex standardized rates of eight major procedures (coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, surgery after hip fracture, knee-replacement surgery, caesarean section, hysterectomy, computed tomography scan, and magnetic resonance imaging scan) from the National Health Insurance database in Korea for the 2013 period. Using the coefficient of variation, the extremal quotient, and the systematic component of variation, we measured geographic variation for these eight procedures in districts and new areal units. RESULTS: Compared with districts, new areal units showed a reduction in geographic variation. Extremal quotients and inter-decile ratios for the eight procedures were lower in new areal units. While the coefficient of variation was lower for most procedures in new areal units, the pattern of change of the systematic component of variation between districts and new areal units differed among procedures. CONCLUSIONS: Geographic variation in medical service utilization could vary according to the geographic unit of analysis. To determine how geographic characteristics such as population size and number of geographic units affect geographic variation, further studies are needed.


Subject(s)
Female , Pregnancy , Angioplasty, Balloon, Coronary , Arteries , Cesarean Section , Delivery of Health Care , Hip , Hysterectomy , Korea , Magnetic Resonance Imaging , National Health Programs , Population Density , Small-Area Analysis , Transplants
2.
Journal of the Korean Society of Emergency Medicine ; : 1-8, 2011.
Article in Korean | WPRIM | ID: wpr-148880

ABSTRACT

PURPOSE: Shorter response time is very important for critically-ill patients. The study utilized a linear planning and simulation technique to design a two-tiered system with advanced life support (ALS) ambulances. METHODS: We collected the ambulance run-sheet data from a fire department from January, 2006 to December, 2007 to determine emergency medical service (EMS) demands. The location of patient ambulance stations were mapped by geocoding and the most appropriate number and location of ambulances was calculated with the linear planning method. The planning result was validated with a discrete simulation. RESULTS: The initial enrollment was 227,377 cases of 119 calls. After geocoding, 170,472 (74.9%) cases were directly matched, 56,899 (25.0%) were indirectly matched, and (0.1%) were not matched. The latter were excluded. Using the linear planning method, the number of additional ambulances was calculated for a new two-tiered ambulance system that could achieve a 90% service level. From the current single-tiered system with 112 ambulances to a two-tiered system of 211 basic life support (BLS) units and 40 ALS units, the BLS service level for minor patients could be raised to 90%. For severely-ill patients , a BLS and ALS service level of up to 82% and 89%, respectively, service level could be achieved. The new two-tiered system was validated with the discrete simulation. After the simulation, the BLS and ALS service level for severely-ill patients reached 85% and 93%, respectively. As well, a 100% BLS service level for minor patients was achieved. CONCLUSION: Linear planning and discrete simulation with GIS data enabled the simulation of a two-tiered ambulance system that can shorten the response time of the current single-tiered system.


Subject(s)
Humans , Advanced Cardiac Life Support , Ambulances , Emergencies , Emergency Medical Services , Fires , Geographic Mapping , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL